PodcastsScienceChoses à Savoir SCIENCES

Choses à Savoir SCIENCES

Choses à Savoir
Choses à Savoir SCIENCES
Latest episode

2477 episodes

  • Choses à Savoir SCIENCES

    Pourquoi les étoiles paraissent-elles plus brillantes en hiver ?

    2026/2/09 | 1 mins.
    Lorsque l’hiver arrive dans l’hémisphère nord, beaucoup de personnes ont la même impression : le ciel nocturne semble plus spectaculaire. Les étoiles paraissent plus nombreuses, plus nettes, parfois même plus scintillantes. Pourtant, leur luminosité intrinsèque ne change pas au fil des saisons. Ce sont surtout les conditions d’observation depuis la Terre qui évoluent, et elles deviennent particulièrement favorables en hiver.

    En hiver, l’air est généralement plus froid et plus sec. Or, la vapeur d’eau contenue dans l’atmosphère agit comme un filtre : elle diffuse et absorbe une partie de la lumière provenant des étoiles. Quand l’air contient moins d’humidité, il devient plus transparent, ce qui permet à davantage de lumière stellaire d’atteindre nos yeux.

    De plus, les basses températures réduisent les mouvements turbulents de l’air. Ces turbulences, fréquentes en été lorsque les masses d’air chaud et froid se mélangent, déforment légèrement les rayons lumineux et donnent l’impression que les étoiles « tremblent » ou perdent en netteté. En hiver, l’atmosphère est souvent plus stable, ce qui améliore la précision et la luminosité apparente des étoiles.

    Les beaux jours favorisent la présence de pollen, de poussières et de polluants en suspension dans l’air. Ces particules diffusent la lumière artificielle et naturelle, créant une sorte de voile lumineux qui affaiblit le contraste du ciel nocturne. En hiver, l’air est souvent plus « propre », notamment après le passage de systèmes météorologiques qui chassent les particules vers le sol. Résultat : un fond de ciel plus sombre et des étoiles qui ressortent davantage.

    Un autre facteur évident joue en faveur de l’hiver : la durée de la nuit. Les nuits plus longues permettent d’observer le ciel dans des conditions de noirceur plus marquées, loin des lueurs du crépuscule. Plus le ciel est sombre, plus l’œil humain est capable de percevoir des étoiles faibles, ce qui renforce l’impression de richesse et de brillance du ciel.

    L’hiver correspond aussi à l’apparition de certaines constellations parmi les plus spectaculaires. Orion, par exemple, abrite plusieurs étoiles très brillantes. Sirius, l’étoile la plus lumineuse du ciel nocturne, est également une vedette des nuits hivernales. La présence de ces astres remarquables contribue fortement à l’impression globale d’un ciel plus éclatant.

    En résumé, les étoiles ne produisent pas plus de lumière en hiver. Elles paraissent plus brillantes parce que l’atmosphère laisse mieux passer leur lumière, que le ciel est plus sombre, et que des étoiles intrinsèquement très lumineuses dominent la voûte céleste. L’hiver agit ainsi comme un « nettoyeur » naturel du ciel, offrant aux observateurs un spectacle cosmique particulièrement saisissant.
    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
  • Choses à Savoir SCIENCES

    Qu'est-ce que la “propulsion autophage” ?

    2026/2/08 | 3 mins.
    La propulsion autophage est un concept expérimental en ingénierie spatiale qui désigne un type de moteur-fusée capable de consommer une partie de sa propre structure pour produire de la poussée. Autrement dit, le moteur utilise certains de ses composants solides à la fois comme éléments de structure et comme carburant.

    Dans une fusée classique, le carburant et le comburant sont stockés dans des réservoirs distincts, puis acheminés vers une chambre de combustion à l’aide de pompes ou de systèmes sous pression. Ces réservoirs, canalisations et structures représentent une masse importante qui ne participe pas directement à la propulsion. La propulsion autophage cherche à réduire cette masse « inutile » en fusionnant plusieurs fonctions en une seule.

    Le principe repose sur l’utilisation d’un matériau solide, souvent un polymère spécifique, qui constitue la paroi du moteur. Sous l’effet de la chaleur interne, ce matériau est progressivement fondu ou décomposé chimiquement. La matière obtenue est ensuite dirigée vers la chambre de combustion, où elle est mélangée à un oxydant, généralement stocké dans un réservoir séparé. Le mélange brûle, produisant des gaz chauds expulsés par la tuyère, ce qui génère la poussée. À mesure que le moteur fonctionne, ses parois sont donc lentement consommées.

    Ce fonctionnement explique l’appellation « autophage », qui signifie littéralement « qui se mange soi-même ».

    Ce concept présente plusieurs avantages théoriques. D’abord, il permet une réduction importante de la masse totale du lanceur, car une partie de la structure devient utile à la propulsion. Ensuite, il simplifie l’architecture du moteur, en diminuant le nombre de réservoirs, de conduites et de composants complexes. Enfin, cette approche pourrait améliorer le rapport entre la masse de carburant et la masse totale, ce qui est un facteur clé pour augmenter les performances des fusées.

    La propulsion autophage se rapproche des moteurs hybrides, qui combinent un carburant solide et un oxydant liquide, mais avec une différence majeure : dans un moteur hybride classique, le carburant solide est un bloc distinct, alors que dans un moteur autophage, la structure elle-même joue ce rôle.

    On peut citer le cas de la start-up française Alpha Impulsion, qui se distingue par le développement d’une technologie de propulsion autophage appliquée aux lanceurs spatiaux. L’entreprise mise sur des matériaux et des procédés permettant au moteur de consommer sa propre structure de manière contrôlée, avec l’objectif de réduire la masse des systèmes, de limiter les déchets et d’abaisser l’empreinte environnementale des lancements. Selon Alpha Impulsion, cette approche pourrait contribuer à rendre l’accès à l’espace à la fois plus économique et plus durable, en simplifiant la conception des fusées tout en améliorant leur efficacité globale.

    Malgré son potentiel, cette technologie reste au stade de la recherche. Plusieurs défis techniques subsistent, notamment le contrôle précis de la vitesse de consommation du matériau, la stabilité de la combustion et la garantie de la solidité mécanique du moteur pendant que sa structure s’amincit.

    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
  • Choses à Savoir SCIENCES

    Pourquoi ressent-on une sensation de chute après le décollage ?

    2026/2/05 | 2 mins.
    Juste après le décollage, beaucoup de passagers ressentent une sensation déroutante : l’impression que l’avion, après avoir grimpé, se met soudainement à redescendre. Certains parlent même d’une « chute » quelques dizaines de secondes après avoir quitté le sol. Pourtant, du point de vue de la physique, l’avion continue bel et bien de monter. Cette impression est une illusion sensorielle, née d’un décalage entre ce que font réellement l’appareil et ce que perçoit notre corps.
    Commençons par le déroulement d’un décollage. Lorsqu’un avion quitte la piste, les moteurs délivrent une poussée maximale pour atteindre la vitesse nécessaire à l’envol. L’appareil adopte ensuite un angle de montée relativement prononcé afin de gagner rapidement de l’altitude. Cette phase initiale est énergivore, mais indispensable pour s’éloigner du sol et des obstacles.

    Environ 20 à 40 secondes après le décollage, les pilotes réduisent volontairement la puissance des moteurs. Cette étape, parfaitement normale, s’appelle la réduction de poussée ou « thrust reduction ». Elle vise à préserver les moteurs, diminuer le bruit et optimiser la consommation de carburant. L’avion continue de grimper, mais avec une accélération moindre.

    C’est précisément ce changement qui trompe notre cerveau. Pendant la forte accélération initiale, notre corps est plaqué contre le siège. Lorsque la poussée diminue, cette pression se relâche légèrement. Le cerveau interprète alors ce relâchement comme une perte d’altitude, alors qu’il s’agit simplement d’une variation d’accélération.
    À cela s’ajoute le rôle central de l’oreille interne, et plus précisément du système vestibulaire. Ce système est chargé de détecter les mouvements et les accélérations de la tête. Il fonctionne très bien pour les mouvements courants, mais il est facilement trompé dans des environnements inhabituels comme un avion. Lorsqu’une accélération change brusquement, l’oreille interne peut envoyer au cerveau un signal erroné suggérant une descente.

    La vision joue également un rôle. Dans un avion, surtout de nuit ou par temps couvert, il n’y a souvent aucun repère visuel extérieur permettant de confirmer la montée. Privé d’indices visuels, le cerveau se fie davantage aux sensations internes, plus sujettes à l’erreur.

    Il existe même un nom pour ce type d’illusion : l’illusion somatogravique. Elle correspond à une mauvaise interprétation des accélérations linéaires comme des variations d’orientation ou d’altitude.

    En résumé, l’avion ne tombe pas après le décollage. Il poursuit son ascension, mais avec une puissance moteur réduite. La sensation de chute est une construction de notre cerveau, prise au piège par ses propres capteurs biologiques. Une preuve de plus que, face à la physique du vol, nos sens ne sont pas toujours des instruments fiables.

    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
  • Choses à Savoir SCIENCES

    Par où fond l'Antarctique ?

    2026/2/04 | 2 mins.
    Quand on imagine la fonte de l’Antarctique, on pense spontanément à une glace qui disparaît par le dessus, sous l’effet de l’air plus chaud. Pourtant, la réalité est plus complexe : l’Antarctique fond en grande partie par le dessous. Et ce processus discret, invisible depuis la surface, joue un rôle majeur dans l’accélération de la perte de glace.

    La calotte glaciaire antarctique repose sur un socle rocheux irrégulier. Dans de nombreuses régions, ce socle se situe même sous le niveau de la mer. Entre la roche et la glace circule de l’eau liquide, formant un immense réseau de rivières et de lacs sous-glaciaires. Cette eau provient principalement de deux sources : la chaleur géothermique émise par la Terre et la pression énorme exercée par la glace elle-même, qui abaisse le point de fusion.

    Cette fine couche d’eau agit comme un lubrifiant. Elle réduit la friction entre la glace et le sol, permettant aux glaciers de glisser plus facilement vers l’océan. Plus l’eau est abondante, plus la glace se déplace rapidement. Et lorsque ces glaciers atteignent la mer, ils contribuent directement à l’élévation du niveau des océans.

    À cela s’ajoute un autre mécanisme clé : l’intrusion d’eaux océaniques relativement chaudes sous les plateformes de glace flottantes. Autour de l’Antarctique, certaines masses d’eau profondes sont quelques degrés plus chaudes que l’eau de surface. Elles s’infiltrent sous les plateformes glaciaires et provoquent une fonte basale, c’est-à-dire par le dessous. Ce phénomène amincit la glace, la fragilise et facilite le détachement d’icebergs.

    Longtemps, ces processus ont été difficiles à quantifier, car ils se déroulent sous plusieurs kilomètres de glace. Mais des chercheurs ont récemment développé un modèle informatique de nouvelle génération capable de simuler, à l’échelle du continent entier, la circulation de l’eau sous-glaciaire et son interaction avec le mouvement de la glace. Ce modèle combine données satellitaires, topographie du socle, température, pression et dynamique des glaciers.

    Les résultats montrent que l’eau sous-glaciaire ne s’écoule pas au hasard. Elle suit des chemins organisés, influencés par les pentes du terrain et l’épaisseur de la glace. Ces flux contrôlent directement la vitesse des glaciers. Dans certaines régions, un léger changement dans la distribution de l’eau peut suffire à accélérer fortement l’écoulement vers la mer.

    En résumé, l’Antarctique ne fond pas seulement en surface : il fond par en dessous, sous l’effet conjoint de la chaleur interne de la Terre et des eaux océaniques plus chaudes. Comprendre ces mécanismes est essentiel, car ils conditionnent la stabilité future de la calotte glaciaire et donc l’ampleur de la montée des océans dans les décennies à venir.
    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
  • Choses à Savoir SCIENCES

    Pourquoi les objets se brisent-ils de la même façon ?

    2026/2/03 | 2 mins.
    Lorsqu’un objet se brise, notre impression immédiate est celle du chaos : des morceaux de tailles variées, projetés dans toutes les directions, sans logique apparente. Pourtant, qu’il s’agisse d’un verre qui éclate, d’un sucre que l’on écrase ou d’une bulle de savon qui disparaît, ces phénomènes obéissent à des règles étonnamment similaires. C’est ce que révèle une avancée récente en physique : la fragmentation suit une loi universelle.

    Pour comprendre cela, il faut d’abord s’intéresser à la notion de contraintes internes. Tous les matériaux, même les plus solides, contiennent des défauts microscopiques : fissures invisibles, zones plus fragiles, irrégularités dans leur structure. Lorsqu’une force est appliquée — choc, pression, tension — l’énergie se propage dans l’objet sous forme d’ondes mécaniques. Ces ondes se concentrent naturellement autour des défauts, où la rupture commence.

    Ce qui est remarquable, c’est que la façon dont l’énergie se répartit dans le matériau détermine directement la taille et le nombre des fragments produits. Un physicien français a récemment proposé une équation capable de décrire cette répartition, quel que soit l’objet étudié. Verre, céramique, sucre, métal mince ou même bulles de liquide : tous suivent la même courbe statistique.

    Cette courbe montre que les petits fragments sont toujours très nombreux, tandis que les gros morceaux sont beaucoup plus rares. Autrement dit, il existe une relation mathématique stable entre la taille d’un fragment et sa probabilité d’apparition. Ce type de relation est appelé une loi d’échelle : on retrouve la même forme de distribution, que l’on casse un grain de sucre ou un bloc de roche.

    Pourquoi une telle universalité ? Parce que, au moment de la rupture, le matériau n’« hésite » pas. Dès que la contrainte dépasse un seuil critique, un réseau de fissures se propage à grande vitesse, se ramifie et se croise. Ce processus de propagation est gouverné par des équations fondamentales de la mécanique et de la physique des matériaux, indépendantes de la nature précise de l’objet.

    Même une bulle de savon suit cette logique. Lorsqu’elle éclate, la fine membrane liquide se déchire en multiples filaments, qui se fragmentent à leur tour en microgouttelettes. Là encore, la distribution des tailles des gouttes correspond à la même loi que celle observée pour des solides.

    Cette découverte a des implications concrètes. Elle permet d’améliorer la conception de matériaux résistants aux chocs, de mieux comprendre l’érosion des roches, ou encore d’optimiser des procédés industriels comme le broyage et le concassage.

    En résumé, si un objet semble se briser « toujours de la même façon », ce n’est pas par hasard. Derrière le désordre visible se cache un ordre mathématique profond : une loi universelle de la fragmentation, qui révèle que le chaos, en physique, est souvent bien plus organisé qu’il n’y paraît.
    Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

More Science podcasts

About Choses à Savoir SCIENCES

Développez facilement votre culture scientifique grâce à un podcast quotidien ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Podcast website

Listen to Choses à Savoir SCIENCES, The Rest Is Science and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features

Choses à Savoir SCIENCES: Podcasts in Family

  • Podcast Real Life French
    Real Life French
    Education, Language Learning
Social
v8.5.0 | © 2007-2026 radio.de GmbH
Generated: 2/10/2026 - 9:40:13 AM