
The Right Way to Lead in Your First 90 Days
2026/1/09 | 20 mins.
New leaders face a choice fast. Do you adapt to the organization you inherit, or reshape it around the way you lead?In this conversation, Amir sits down with Gian Perrone, engineering leader at Nav, to unpack how org design really works in the first 30 to 120 days, and how to drive change without spiking anxiety or losing trust.You will hear how Gian treats leadership as triage, why “listen and learn” is rarely passive, and what separates a thoughtful reorg from one that feels chaotic.Key takeawaysLeaders almost always arrive with hypotheses, the real work is testing them without rushing to force a playbookA reorg is not automatically bad, perception turns negative when the why is unclear and people feel unsafeOver communicating helps, but thinking out loud too often can create noise, a structured comms plan keeps change steadyA simple way to spot a collaborative culture is to disagree in the interview and see how they respondManagers are the front line in change, set clear expectations so teams hear a consistent story about what is changing and whyTimestamped highlights00:01 What Nav does, and the real question behind org design for new leaders01:59 Why “first 90 days” is usually triage, not passive observation04:14 The reorg stopwatch, and why structure reflects your worldview08:36 How to communicate change without destabilizing teams12:54 A practical interview move to test whether a company truly collaborates17:03 The manager layer, how Gian sets expectations so change lands wellA line worth repeating“If you arrive and something is on fire, you are going to fix it.”A few practical moves worth stealingWhen you are new, write down your hypotheses early, then use real signals to confirm or kill themFloat a change as a real idea first, gather feedback, then come back with details before you finalizeCreate a simple comms map of who hears what, when, and from whom, then follow itBe matter of fact about changes, teams often mirror the tone you setCall to actionIf this episode helped you think more clearly about leadership and org design, follow the show and share it with one operator who is navigating change right now.

How to Ship AI Agents Fast Without Breaking Everything
2026/1/08 | 28 mins.
Nir Soudry, Head of R&D at 7AI, breaks down how teams can move from early experimentation to real production work fast, without shipping chaos. If you are building AI features or agent workflows, this conversation is a practical look at speed, safety, and what it actually takes to earn customer trust.Nir shares how 7AI ships in tight loops with a real customer in mind, why pushing decisions closer to the engineers removes bottlenecks, and how guardrails and evaluation keep fast releases from turning into security risks. You will also hear a grounded take on human plus AI collaboration, and why “just hook up an LLM” falls apart at scale.Key takeaways• Speed starts with focus, pick one customer and ship something usable in two or three weeks, then iterate every couple of weeks based on real feedback• If you want velocity, remove the meeting chain, get engineers in the room with customers and push decisions downstream• Agent workflows are not automatically testable, you need scoped blast radius, strong input and output guardrails, and an evaluation plan that matches real production complexity• “LLM as a judge” helps, but it is not magic, you still need humans reviewing, labeling, and tuning, especially once you have multi step workflows• In security, trust is earned through side by side proof, run a real pilot against human outcomes, measure accuracy and thoroughness, then improve with tight feedback loopsTimestamped highlights00:28 What 7AI is building, security alert fatigue, and why minutes matter02:03 A fast shipping cadence, one customer, quick prototypes, rapid iterations03:51 The velocity playbook, engineers plus sales in the same meetings, fewer bottlenecks08:08 Shipping agents safely, blast radius, guardrails, and why testing is still hard14:37 Human plus AI in practice, how ideas become working agents with review and monitoring18:04 Why early AI adoption works for some customers, and how pilots build confidence24:12 The startup reality, faster execution, traction, and why hiring still mattersA line worth sharing“When it’s wrong, click a button, and next time it will be better.”Pro tips you can steal• Run a two to four week pilot with one real customer and ship weekly, the goal is learning speed, not perfect coverage• Put engineers directly in customer conversations, keep leadership focused on unblocking, not gatekeeping• Treat every agent like a product surface, define strict inputs and outputs, sanitize both, and limit what it can affect• Build evaluation around real workflows, not single prompts, and combine automated checks with human review• Add feedback buttons everywhere, route feedback to both model improvement and the team that tunes production behaviorCall to actionIf you want more conversations like this on building real tech that ships, follow and subscribe to The Tech Trek.

Why Pricing Breaks as You Scale
2026/1/07 | 27 mins.
B2B pricing is still way harder than it should be, even in 2026. In this conversation, Tina Kung, Founder and CTO at Nue.ai, breaks down why quote to revenue can take weeks, and how a flexible pricing engine can turn it into something closer to one click.You will hear how fast changing pricing models, AI driven products, and new selling motions are forcing revenue teams to rethink the entire system, not just one tool in the stack.Key takeaways• B2B quoting is basically a shopping cart, but the real complexity is cross team workflow, accounting controls, and downstream revenue rules.• Fragmented systems break the moment pricing changes, and in fast markets that can mean you only get one real pricing change per year.• AI companies often evolve from simple subscriptions to usage, services, and even physical goods, which creates billing chaos without a unified backbone.• Commit based models can make revenue more predictable while staying flexible for customers, but only if you can track entitlement, burn down, overspend, and approvals cleanly.• The most useful AI in revenue ops is not just insight, it is action, meaning it can generate the right transaction safely inside a system of record.Timestamped highlights00:43 What Nue.ai actually does, one platform for billing, usage, and revenue ops with intelligence on top02:43 Why a one minute checkout in B2C turns into weeks or months in B2B05:28 The real reason quote to revenue stays broken, fragmentation and brittle integrations08:03 How AI era pricing evolves, subscriptions to consumption, services, and physical goods12:51 Why Tina designed for flexibility from day one, and what 70 plus customer calls revealed19:42 Transactional intelligence, AI that can create the quote, route approvals, and move revenue work forwardA line worth keeping“It should be as easy as one click.”Practical moves you can steal• Map every pricing change to the downstream work it triggers, quoting, billing, revenue recognition, and approvals, then measure how many handoffs exist today.• If you sell both self serve and enterprise, design for multiple selling motions early, because the same objects can have totally different context and risk.• Treat pricing as a product surface, if your systems make changes slow, you are giving up speed in the market.Call to actionIf you want more conversations like this on how modern tech companies actually operate, follow the show on Apple Podcasts or Spotify, and connect with me on LinkedIn for clips and episode takeaways.

Physical AI in Farming, Autonomy That Actually Pays Off
2026/1/06 | 26 mins.
Tim Bucher, CEO and cofounder of Agtonomy, joins Amir to break down what physical AI looks like when it leaves the lab and shows up on the farm. Tim shares how his sixth generation farming roots and a lucky intro computer science class led to a career that included Microsoft, Apple, and Dell, then back into agriculture with a mission that hits the real world fast.This conversation is about building tech that earns its keep, delivers clear ROI, and improves quality of life for the people who keep the food supply moving.Key takeaways• Deep domain experience is a real advantage, especially in ag tech, you cannot fake the last mile of operations• The win is ROI first, but quality of life is right behind it, less stress, more time, and fewer dangerous moments on the job• Agtonomy focuses on autonomy software inside existing equipment ecosystems, not building tractors from scratch, because service networks and financing matter• One operator can run multiple vehicles, shifting the role from tractor driver to tech enabled fleet operator• Hiring can change when the work changes, some farms started attracting younger candidates by posting roles like ag tech operatorTimestamped highlights00:42 What Agtonomy does, physical AI for off road equipment like tractors01:45 Tim’s origin story, sixth generation farming roots and the class that changed his path03:59 Lessons from Bill Gates, Steve Jobs, and Michael Dell, and how Tim filtered the mantras into his own leadership05:53 The moment everything shifted, labor pressure, regulations, and the prototype built to save his own farm09:17 The blunt advice for ag tech founders, if you do not have a farmer on the team, fix that11:54 ROI in plain terms, one person operating a fleet from a phone or tablet14:29 Why Agtonomy partners with equipment manufacturers instead of building new vehicles, dealers, parts, service, and financing are the backbone17:39 The overlooked benefit, quality of life, reduced stress, and a more resilient food supply chain20:18 How farms started hiring differently, “ag tech operator” roles and even “video game experience” as a signalA line that stuck with me“This is not just for Trattori farms. This is for the whole world. Let’s go save the world.”Pro tips you can actually use• If you are building in a physical industry, hire a real operator early, not just advisors, get someone who lives the workflow• Write job posts that match the modern workflow, if the work is screen based, label it that way and recruit for it• Design onboarding around familiar tools, if your UI feels like a phone app, training time can collapseCall to actionIf you got value from this one, follow the show and share it with a builder who cares about real world impact. For more conversations like this, subscribe and connect with Amir on LinkedIn.

The Simple Framework to Pick AI Projects That Actually Pay Off
2026/1/05 | 22 mins.
Data and AI are everywhere right now, but most teams are still guessing where to start. In this episode, Cameran Hetrick, VP of Data and Insights at BetterUp, breaks down what actually works when you move from AI hype to real business impact. You will hear a practical way to choose AI and analytics projects, how to spot low risk wins, and why clean, governed data still decides what is possible. Cameran also shares a simple mindset shift, stop copying broken workflows, and start rethinking the outcome you are trying to create.Key Takeaways• AI is a catchall term right now, the best early wins usually come from “assist” use cases that boost speed and quality, not full replacement• Start with low context, low complexity work, then earn your way into higher context projects as data quality and governance mature• Pick use cases with an impact versus effort lens, quick wins create proof, buy in, and budget for bigger bets• Stakeholders often ask for a data point or feature, but the real value comes from digging into the goal, and redesigning the workflow• Data teams cannot stop at insights, adoption matters, if the next team cannot act on the output, the project stallsTimestamped Highlights00:40 BetterUp’s mission, building a human transformation platform for peak performance01:57 AI as a “catchall,” where expectations are realistic, and where they are not05:19 A useful way to think about AI work, context versus complexity, and why “intern level” framing helps07:33 How to choose projects with an impact and level of effort calculator, and why trust in data is everything10:33 The hard part, translating stakeholder requests into real outcomes, and reimagining workflows instead of automating bad ones13:47 Systems thinking across handoffs, plus why teams need deeper business fluency, including P and L basics16:59 The last mile problem, if the next stakeholder cannot act, the value never lands20:27 The bottom line, AI does not change the fundamentals, it accelerates themA Line Worth Saving“AI is like an intern, it still needs direction from somebody who understands the mechanics of the business.” Practical Moves You Can Use• Run every idea through two quick questions, what business impact do we expect, and what level of effort will it take• Look for a win you can explain in one minute, then use it to fund the harder work• When someone asks for a metric or feature, ask why twice, then validate the workflow, then redesign the outcome• Invest in governed data early, untrusted outputs kill adoption fastCall to ActionIf this episode helped you think more clearly about AI in the real world, follow the show, leave a quick review, and share it with one operator who is trying to move from experiments to impact. You can also follow Amir on LinkedIn for more clips and practical notes from each episode.



The Tech Trek