The Benefits of Mitigating Heat Stress in Dairy Cattle with Dr. Lance Baumgard, Iowa State University
This Real Science Exchange podcast episode was recorded during a webinar from Balchem’s Real Science Lecture Series. You can find it at balchem.com/realscience.Dr. Baumgard begins with an overview of the structure and function of the gastrointestinal tract. More than 75% of an animal’s immune system resides in the gut. The focus of this webinar is how heat stress initiates leaky gut, how that leaky gut then influences the immune and hormonal systems, and ultimately, how that reduces productivity. (0:22)Dr. Baumgard compares the metabolism of a cow 200 days in milk to a cow 10 days in milk. The 200-day cow is experiencing ad libitum intake and gaining weight. Her insulin levels would be high, and NEFAs would be low. On the other hand, the 10-day cow is experiencing suboptimal intake, and her insulin levels are the lowest they’ll ever be during the production cycle. Body tissue is mobilized, and NEFAs will increase. Research shows it takes 72 grams of glucose to make one kilogram of milk. Any disruption to the gluconeogenic pathway has the potential to decrease milk yield. (6:38)Heat stress is estimated to cost the US dairy industry $1.7 billion each year. Regardless of climate change, heat stress will continue to be an issue because all economically important phenotypes in animal agriculture are heat-producing processes. Dr. Baumgard’s lab has been investigating the biology of heat stress to implement more effective mitigation strategies. (9:09)How much of the reduction in feed intake during heat stress explains the reduction in milk yield? A pair-feeding experiment comparing thermoneutral to heat-stressed cows showed that about 50% of the reduction in milk yield during a heat wave is due to a reduction in feed intake. The thermoneutral cows lost weight in response to decreased intake, and their NEFAs increased. Heat-stressed cows did not have an increase in NEFA. Heat-stressed animals fail to mobilize adipose tissue despite their endocrine profile predicting that they should. However, insulin is high when we would expect it to be low, and that response to heat stress is highly conserved in all species. (10:43)Heat-stressed cows produced about 400 grams less lactose per day than their pair-fed thermoneutral controls. This is nearly a pound! Is the liver producing 400 fewer grams of glucose each day? Or is some other extramammary tissue using more glucose per day? Dr. Baumgard’s work suggests that the immune system is where the 400 grams of glucose go in heat-stressed animals. During heat stress, vasodilation at the body surface occurs, with concomitant vasoconstriction in the gut. The gut epithelium is very sensitive to reduced oxygen delivery that would result from the vasoconstriction, and tight junction proteins do not function properly, resulting in a leaky gut. This results in an infiltration of antigens into the body, which causes an immune response. (15:36)Dr. Baumgard details how insulin fits into these immune responses via the Warburg effect. An activated immune cell prefers glucose and needs it in high quantities. The activated cell switches from the Kreb’s cycle to generate ATP to aerobic glycolysis. This requires high insulin. The immune system requires approximately one gram of glucose per kilogram of metabolic body weight per hour. (25:03)By far, the biggest impact a dairy producer can make to alleviate heat stress is to modify the environment physically: shade, fans, soakers, misters, etc. Investing in cooling cows improves production efficiency and profitability, summer fertility, animal welfare and health, and sustainability. Other important heat abatement considerations include adequate water availability, reducing walking distance to the parlor and time in the holding pen, and improving ventilation. Dry cows should also be part of any heat abatement strategy, as the benefits of cooling dry cows extends far into lactation. Dr. Baumgard also discusses different dietary management strategies for heat stress situations. (32:43)In summary, heat stress decreases almost every metric of productivity and costs everyone in the industry. Reduced feed intake is only part of the problem. Heat-induced leaky gut results in biological consequences incredibly similar to any other immune activation, such as mastitis or metritis. For dairy producers, heat stress abatement should by far be their biggest priority. Once those infrastructure improvements are in place, dietary interventions are another good strategy to minimize the negative consequences of heat stress. (47:43)Dr. Baumgard takes questions from the webinar audience. (49:22)Please subscribe and share with your industry friends to invite more people to join us at the Real Science Exchange virtual pub table. If you want one of our Real Science Exchange t-shirts, screenshot your rating, review, or subscription, and email a picture to
[email protected]. Include your size and mailing address, and we’ll mail you a shirt.